• 姓名(中文/汉语拼音)李 君
  • 职称副教授(硕士生导师)
  • 职务
  • 专业工程热物理
  • 所在系、所能源与动力工程系
  • 通讯地址天津大学北洋园校区34-A338
  • 电子信箱lijun79@tju.edu.cn
  • 办公室电话+86(0)22 27401830
  • 传真+86(0)22 27401830
主要学历:
1998/9 - 2002/7,哈尔滨工业大学 热能与动力工程系,工学学士
2002/9 - 2004/7,哈尔滨工业大学 热能工程专业,工学硕士
2004/8 - 2009/7,新加坡国立大学 机械工程系,工学博士(PhD)
主要学术经历:
2012年1月至今,天津大学 机械工程学院 热能工程系,副教授
2013年, 天津大学 工程热物理(二级学科),硕士生导师
2014年,天津大学 动力工程(二级学科),硕士生导师
主要研究方向:
1. 微尺度燃烧(micro-scale combustion)
2. 微动力系统(micro power devices)
3. 增强型地热系统(enhanced geothermal system, EGS)
4. 地下自燃煤火(spontaneous underground coal fires)
主要讲授课程:
本科生,《燃烧学》,32学时
研究生,《高等燃烧学》,32学时
主要学术兼职:
Applied Thermal Engineering,Energy,Energy Conversion and Management,Heat Transfer Engineering 等期刊的审稿人
主要学术成就、奖励及荣誉:
2013年,入选天津大学”北洋学者 青年骨干教师”
2016年,天津大学本科生毕业设计优秀指导教师

指导学生获奖:
1. 孟龙,2011级本科生,毕业设计优秀论文(2015年)
2. 王源涛,2013级硕士研究生,“北洋英才奖”(2015年)、国家奖学金(2015年)
主要科研项目及角色:
—————————————— 项目负责人 —————————————— Principal Investigator ——————————————
1.(中国矿业大学) 煤炭资源与安全开采国家重点实验室开放基金,用于地下煤火过程的多孔介质中的复杂反应流模型(14KF01),2015/1-2016/12,6万
2. 国家自然科学基金外国青年学者研究基金,Modelling of reactive flows through porous media with application to underground fire safety (51450110438),2015/1-2015/6,10万,中方负责人
3. (华中科技大学)煤燃烧国家重点实验室开放基金,微小尺度燃烧器中催化燃烧过程及其关键控制因素的研究(FSKLCC1411),2014/7-2016/6,5万
4. 国家自然科学基金(青年基金项目),部分填充多孔介质的平板微燃烧器的稳燃特性及耦合传热机理研究(51306129),2014/1-2016/12,26万
5. 教育部博士点基金(新教师类),催化表面在微尺度燃烧中对稳燃的影响以及表面-气相反应之间的相互作用机理(20130032120039),2014/1-2016/12,4万
6. 教育部留学回国人员科研启动基金,多孔介质在微尺度燃烧过程中稳燃和强化换热作用的数值模拟研究,2013/1-2013/12,3万
7. 天津大学自主创新基金,多孔介质对微尺度预混燃烧的稳燃和回热作用研究项目,2013/1-2014/12,5万

—————————————— 项目参与人 —————————————— Participating Investigator —————————————
1. 国家自然科学基金(面上项目),干热岩人工裂隙渗透特性与多场耦合传热传质机理研究,2013/1-2016/12,76万元
2. 863项目,干热岩发电及综合评价关键技术研究,2012/4-2015/3,528万
3. 863项目,中低温发电热力循环系统关键技术与部件研制,2012/11-2015/10,950万
代表性论著:
—————————————— 2012年1月之后 —————————————— After Jan 2012 ——————————————
[1] Q. Li, J. Wang, L. Meng, J. Li* (李君), Z. Guo. CFD Study on stability limits of hydrogen/air premixed flames in planar micro-combustors with catalytic walls. Appl Thermal Eng, 121C, pp. 325-335, 2017.
[2] K. Hooman*, J. Li (李君), M. Dahari. Thermal dispersion effects on forced convection in a porous-saturated pipe. Thermal Sci Eng Prog, 2C, pp. 64-70, 2017
[3] G. Stracher*, Y. White, J. Li (李君). Thermodynamic loop generated pressure-temperature stability diagrams for the nucleation of solids from coal-fire gas. SciTech Connect, Elsevier (online), 2017, http://scitechconnect.elsevier.com/thermodynamic-loop-coal-fire-gas-vents/.
[4] J. Shi*, H. Xiao, J. Li (李君), N. Li, Y. Xia, Y. Xu. Two-dimensional pore level simulation of low-velocity filtration combustion in a packed bed with staggered arrangements of discrete cylinders. Combust Sci Tech, 189, pp. 1260-1276, 2017,
[5] B. Bai*, Y. He, X. Li, J. Li (李君), X. Huang, J. Zhu. Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core. Appl Thermal Eng, 116, pp. 79-90, 2017.
[6] B. Bai*, Y. He, X. Li, S. Hu, X. Huang, J. Li (李君), J. Zhu. Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen. Environ Earth Sci, 75, 1460, 2016.
[7] 朱家玲, 张国伟, 李君*, 白冰. 裂隙通道内流固换热系数解析解及敏感性分析, 太阳能学报, 37(8):2019-2025, 2016.
[8] J. Li* (李君), Q. Li, J. Shi, X. Liu, Z. Guo. Numerical study on heat recirculation in a porous micro-combustor. Combust Flame, 171, pp. 152-161, 2016.
[9] X. Huang*, J. Zhu, J. Li (李君), C. Lan, X. Jin. Parametric study of an enhanced geothermal system based on thermo-hydro-mechanical modeling of a prospective site in Songliao Basin. Appl Thermal Eng, 105, pp. 1-7, 2016.
[10] X. Huang, J. Zhu, J. Li* (李君), B. Bai, G. Zhang. Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure. Int Commun Heat Mass Transfer, 75, pp. 78-85, 2016.
[11] J. Li* (李君), Y. Wang, J. Chen, J. Shi, X. Liu. Experimental study on standing wave regimes of premixed H2-Air combustion in planar micro-combustors partially filled with porous medium. Fuel, 167, pp. 98-105, 2016.
[12] K. Hooman, J. Li* (李君), M. Dahari. Slip flow forced convection through microducts of arbitrary cross-section: heat and momentum analogy. Int Commun Heat Mass Transfer, 71, pp. 176-79, 2016.
[13] J. Li* (李君), Q. Li, Y. Wang, Z. Guo, X. Liu. Fundamental flame characteristics of premixed H2–air combustion in a planar porous micro-combustor. Chem Eng J, 283, pp. 1187-96, 2016.
[14] J. Li* (李君), Y. Wang, J. Chen, X. Liu, Z. Guo. Effects of combustor size and filling condition on stability limits of premixed H2-air flames in planar microcombustors. AIChE J, 61, pp. 2571-80, 2015.
[15] J. Li* (李君), Y. Wang, J. Shi, X. Liu. Dynamic behaviors of premixed hydrogen-air flames in a planar micro-combustor filled with porous medium. Fuel, 145, pp. 70-78, 2015.
[16] Z. Wu*, L. Yue, Z. Li, J. Li (李君), A.S. Mujumdar, J.A. Rehkopf. Pulse combustion spray drying of egg white: energy efficiency and product quality. Food Bioprocess Tech, 8, pp. 148-57, 2015.
[17] X. Huang, J. Zhu, C. Niu, J. Li* (李君), X. Hu, X. Jin. Heat extraction and power production forecast of a prospective Enhanced Geothermal System site in Songliao Basin, China. Energy, 75, pp. 360-70, 2014.
[18] T. Li, J. Zhu, W. Zhang and J. Li* (李君). Thermodynamic optimization of a neoteric geothermal poly-generation system in an oilfield. Int J Energy Res, 37, pp.1939-51, 2013.
[19] W. Fu, J. Zhu, T. Li, W. Zhang and J. Li* (李君). Comparison of a Kalina cycle based cascade utilization system with an existing organic Rankine cycle based geothermal power system in an oilfield. Appl Thermal Eng, 58, pp. 224-33, 2013.


—————————————— 2012年1月之前 —————————————— Before Jan 2012 ——————————————
[1] S.K. Chou*, W.M. Yang, K.J. Chua, J. Li (李君) and K.L. Zhang. Development of micro power generators - A review, Appl Energy, 88, pp. 1-16, 2011.
[2] W.M. Yang*, S.K. Chou, K.J. Chua, J. Li (李君) and X. Zhao. Research on modular micro combustor-radiator with and without porous media, Chem Eng J, 168, pp. 799-802, 2011.
[3] S.K. Chou*, W.M. Yang, J. Li (李君) and Z.W. Li. Porous media combustion for micro thermophotovoltaic system applications, Appl Energy, 87, pp. 2862-67, 2010.
[4] W.M. Yang*, S.K. Chou, J.F. Pan, J. Li (李君) and X. Zhao. Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application, J Micromech Microeng, 20, 085003 (8pp), 2010.
[5] W.M. Yang*, S.K. Chou and J. Li (李君). Microthermophotovoltaic power generator with high power density, Appl Thermal Eng, 29, pp. 3144-48, 2010.
[6] J. Li (李君), S.K. Chou*, Z.W. Li and W.M Yang. Development of a 1D model to predict the flame temperature in cylindrical micro combustors, Heat Transfer Eng, 31, pp. 581-91, 2010.
[7] J. Li (李君), S.K. Chou*, Z.W. Li and W.M. Yang. Experimental investigation of porous media combustion in a planar micro-combustor, Fuel, 89, pp. 708-15, 2010.
[8] J. Li (李君), S.K. Chou*, W.M. Yang and Z.W. Li. Experimental and numerical study of the wall temperature of cylindrical micro combustors, J Micromech Microeng, 19, 015019 (11pp), 2009.
[9] J. Li (李君), S.K. Chou*, Z.W. Li and W.M. Yang. Development of 1D model for the analysis of heat transport in cylindrical micro combustors, Appl Thermal Eng, 29, pp. 1854-63, 2009.
[10] J. Li (李君), S.K. Chou*, G. Huang, W.M. Yang and Z.W. Li. Study on premixed combustion in cylindrical micro combustors: transient flame behavior and wall heat flux, Exptl Thermal Fluid Sci, 33, pp. 764-73, 2009.
[11] J. Li (李君), S.K. Chou*, W.M. Yang and Z.W. Li. A numerical study on premixed micro combustion of CH4-air mixture: effects of combustor size, geometry and boundary conditions on flame temperature, Chem Eng J, 150, pp. 213-22, 2009.
[12] J. Li (李君), S.K. Chou*, Z.W. Li and W.M. Yang. A potential heat source for the micro thermophotovoltaic (TPV) System, Chem Eng Sci, 64, pp. 3282-89, 2009.
[13] J. Li (李君), S.K. Chou*, Z.W. Li and W.M. Yang. Characterization of wall temperature and radiation power through cylindrical dump micro-combustors, Combust Flame, 156, pp. 1587-93, 2009.
[14] J. Li (李君), S.K. Chou*, Z.W. Li and W.M. Yang. A comparative study of H2-air premixed flame in micro combustors with different physical and boundary conditions, Combust Theory Modelling, 12, pp. 325-47, 2008.