• 姓名(中文/汉语拼音)田延岭
  • 职称教授,博导
  • 职务
  • 专业机械制造及其自动化
  • 所在系、所机械工程系
  • 通讯地址天津大学机械工程学院,300072
  • 电子信箱meytian@tju.edu.cn
  • 办公室电话+86(0)22 27405561
  • 传真+86(0)22 27405561
主要学历:
03/2002—01/2005 天津大学机械工程学院,获工学博士学位
09/1999—03/2002 天津大学机械工程学院,获工学硕士学位
09/1993—07/1997 西北轻工业学院机械工程系,获工学学士学位
主要学术经历:
12/2006—至今 天津大学机械工程学院,副教授(2006.11),硕士生导师(2007.12),博士生导师(2012.12),教授(2013.06)
07/2011—02/2012 德国Oldenburg大学微机器人与自动化实验室(AMiR),洪堡学者
10/2010—12/2010 日本Tohoku大学纳米力学系,访问教授
09/2007—08/2009 澳大利亚Monash大学机械与航空工程学院,研究员
01/2005—12/2006 天津大学机械工程学院,博士后
09/2006—12/2006 英国华威大学工程学院,访问学者
05/2001—07/2001 香港科技大学机械工程系,访问学者
主要研究方向:
1. 机械系统动力学及其应用技术
2. 微纳操作机器人技术
3. 精密测试系统与理论
主要讲授课程:
工程制图基础3
Advanced Manufacturing Technology
主要学术兼职:
IEEE 机器人与自动化学会会员
Euspen 欧洲精密工程学会会员
中国机械工程学会高级会员
IEEE/ASME Transactions on Mechatronics副主编
International Journal of Intelligent Mechatronics and Robotics 副主编
International Journal of Robotics and Automation 编委
Precision Engineering 评审人
Mechanical Systems and Signal Processing 评审人
Sensors and Actuators A: Physical 评审人
IEEE/ASME Transactions on Mechatronics 评审人
IEEE Transactions on Industrial Electronics 评审人
Robotics and Computer Integrated Manufacturing 评审人
International Journal of Advanced Manufacturing Technology 评审人
国家自然科学基金面上项目评审人
主要学术成就、奖励及荣誉:
承担和参加国家、部委及横向课题10余项,发表论文70余篇,SCI收录30余篇,EI收录40余篇,获得国家发明专利7项,申请4项。
2010年 德国洪堡学者高级研究员(Alexander von Humboldt Research Fellowships for Experienced Researchers)
2012年 欧盟玛丽居里国际引进人才
2011年 教育部“新世纪优秀人才支持计划”入选者
2012年 首批天津大学北洋青年学者
2012年 天津市自然科学三等奖
主要科研项目及角色:
1. 功能表面的设计与精密制造技术,欧盟地平线2020玛丽居里项目,2015.01—2018.12,天津大学负责人。
2. 航空叠层构件柔性制孔工艺装备技术基础,国家自然科学基金重大国际合作研究项目,2015.01—2019.12,主要参加人。
3. 生物医疗机器人及其应用,欧盟第七框架玛丽居里项目,2014.01—2017.12,天津大学负责人。
4. 三维可控探针纳米加工系统及其关键技术研究,国家自然科学基金,2013.01—2016.12,主要参加人。
5. 微纳工程表面测量与表征系统及其关键技术研究,国家自然科学基金,2012.01—2015.12,项目负责人。
6. 牙科陶瓷材料旋转超声加工技术研究,国家自然科学基金,2012.01—2014.12,主要参加人。
7. 2011年教育部“新世纪优秀人才支持计划”项目,2012.01—2014.12,项目负责人。
8. 纳米微定位系统热误差辨识与补偿关键技术研究,国家自然科学基金,2008.01—2010.12,项目负责人。
9. 面向纳米压印的精密定位系统关键技术研究,天津市自然科学基金,2008.04—2010.12,项目负责人。
代表性论著:
[1] Y. Tian, X. Liu, D. Chetwynd, V. Eichhorn, S. Fatikow, D. Zhang, Nonlinear viscoelastic modeling of stylus probing for surface metrology, Precision Engineering, 2013, doi: 10.1016/j.precisioneng. 2013.02.004.
[2] Y. Qin, B. Shirinzadeh, Y. Tian, D. Zhang, Design issues in a decoupled XY platform: static and dynamics modeling, hysteresis compensation, and tracking control, Sensors and Actuators A: Physical, 2013, doi:10.1016/j.sna.2013.02.003.
[3] Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, S. Fatikow, A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications, IEEE/ASME Transactions of Mechatronics, 2013,18(3):981-989.
[4] Y. Qin, B. Shirinzadeh, D. Zhang, Y. Tian, Compliance modeling and analysis of statically indeterminate symmetric flexure structures, Precision Engineering, 2013, 37(2): 415-424.
[5] Y. Tian, R. Wei, V. Eichhorn, S. Fatikow, B. Shirinzadeh, D. Zhang, Mechanical properties of boron nitride nanocones, Journal of Applied Physics, 2012, 111(10): 104316 (7pp).
[6] Y. Tian, R. Wei, W. Gao, V. Eichhorn, S. Fatikow, D. Zhang, Tensile and compressive behavior of silicon nanocones with 120° disclination, Micro and Nano Letters, 2012, 7(8): 798-801.
[7] Y. Tian, R. Wei, V. Eichhorn, S. Fatikow, B. Shirinzadeh, D. Zhang, Buckling and postbuckling behavior of carbon nanocones, Nanoscience and Nanotechnology Letters, 2012, 4(8): 766-874.
[8] X. Jia, J. Liu, Y. Tian, D. Zhang, Stiffness analysis of a compliant precision positioning stage, Robotica, 2012, 30(6): 925-939.
[9] Y. Qin, Y. Tian, D. Zhang, Design and Dynamic Modeling of a 2-DOF Decoupled Flexure-Based Mechanism, Chinese Journal of Mechanical Engineering, 2012, 25(4): 688-696.
[10] Y. Tian, D. Zhang, B. Shirinzadeh, Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation, Precision Engineering, 2011, 35(4): 554-565.
[11] Y. Tian, B. Shirinzadeh, D. Zhang, Y. Zhong, Modeling and Analysis of a three-revolute-revolute- revolute Parallel Micro-Positioning Mechanism, PIMechE Part C, Journal of Mechanical Engineering Science, 2011, 255(5):1027-1043.
[12] Y. Tian, X. Liu, D.G. Chetwynd, B. Shirinzadeh, D. Zhang, Vibration analysis of stylus instrument for random surface measurement, Precision Engineering, 2010, 34(3):586-591..
[13] Y. Tian, B. Shirinzadeh, D. Zhang, Closed-form equations of the filleted V-shaped flexure hinges for compliant mechanism designs, Precision Engineering, 2010, 34(3):408-418.
[14] F. Wang, X. Zhao, D. Zhang, Y. Wu, B. Shirinzadeh and Y. Tian. Design and control of high acceleration precision positioning system with novel flexible decoupling mechanism, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(2): 431-442.
[15] Y. Tian, B. Shirinzadeh, D. Zhang, Design and Dynamics of a 3-DOF Flexure-based Parallel Mechanism for Micro/nano Manipulation, Microelectronic Engineering, 2010, 87(2): 230-241.
[16] Y. Tian, B. Shirinzadeh, D. Zhang. Three flexure hinges for compliant mechanism design based on dimensionless graph analysis, Precision Engineering, 2010, 34(1): 92-100.
[17] Z. Ni. D. Zhang, Y. Wu, Y. Tian, M. Hu, Analysis of parasitic motion in parallelogram compliant mechanism, Precision Engineering, 2010, 32(1): 133-138.
[18] B. Shirinzadeh, P.L. Teoh, Y. Tian, et al. Laser interferometry-based guidance methodology for high precision positioning of mechanisms and robots, Robotics and Computer-Integrated manufacturing, 2010, 26(1): 74-82.
[19] Y. Tian, B. Shirinzadeh, D. Zhang, A flexure-based mechanism and control methodology for ultra-precision turning operation, Precision Engineering, 2009, 33(2): 160-166.
[20] Y. Tian, X. Liu, D. Zhang, D.G. Chetwynd, Dynamic modeling of the fidelity of random surface measurement by the stylus method, Wear, 2009, 266(5-6): 555-559.
[21] Y. Tian, B. Shirinzadeh, D. Zhang, G. Alici. Development and dynamic modelling of a flexure-based Scott-Russell mechanism for nano-manipulation, Mechanical Systems and Signal Processing, 2009, 23(3): 957-978.
[22] Y. Tian, B. Shirinzadeh, D. Zhang, A flexure-based five-bar mechanism for micro/nano manipulation, Sensors and Actuators A: Physical, 2009, 153(1): 96-104.
[23] Y. Tian, B. Shirinzadeh, D. Zhang, X. Liu, D. Chetwynd, Design and forward kinematics of the compliant micro-manipulator with lever mechanisms, Precision Engineering, 2009, 33(4): 466-475.
[24] Y. Tian, B. Shirinzadeh, D. Zhang, X. Liu, D. Chetwynd, Effects of the heat source profiles on the thermal distribution for ultraprecision grinding, Precision Engineering, 2009, 33(4): 447-458.
[25] M.N. Mohd Zubir, B. Shirinzadeh, Y. Tian, Development of a novel flexure hinge microgripper for high precision micro-object manipulation, Sensors and Actuators A: Physical, 2009, 150(2): 257-266.
[26] M.N. Mohd Zubir, B. Shirinzadeh, Y. Tian, A new design of piezoelectric driven compliant-based microgripper for micromanipulation, Mechanism and Machine Theory, 2009, 44(12):2248-2264.
[27] M.N. Mohd Zubir, B. Shirinzadeh, Y. Tian, Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation, Review of Scientific Instruments, 2009, 80: 065106.
[28] D. Zhang, D.G. Chetwynd, X. Liu and Y. Tian. Investigation of a 3-DOF micro-positioning table for surface grinding, International Journal of Mechanical Sciences, 2006, 48(12): 1401-1408.
[29] Y.L. Tian, D.W. Zhang, H.W. Chen et al. Modeling of precision grinding process based on micro- positioning table and error compensation technology, Chinese Journal of Mechanical Engineering, 2005,41(4): 168-173.
[30] D. Zhang, Y. Tian, Y. Gao. Development of a 3-DOF micropositioning workpiece table, Chinese Journal of Mechanical Engineering, 2004, 17(1): 46-50.